Carbonic Anhydrase 5 Regulates Acid-Base Homeostasis in Zebrafish

نویسندگان

  • Ruben Postel
  • Arnoud Sonnenberg
چکیده

The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5) mutation, collapse of fins (cof), which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbonic anhydrase 2 deficiency leads to increased pyelonephritis susceptibility.

Carbonic anhydrase 2 regulates acid-base homeostasis, and recent findings have indicated a correlation between cellular control of acid-base status and the innate defense of the kidney. Mice deficient in carbonic anhydrase 2 (Car2(-/-) mice) have metabolic acidosis, impaired urine acidification, and are deficient in normal intercalated cells. The objective of the present study was to evaluate t...

متن کامل

MS no . : C - 00021 - 2008 Carbonic anhydrase 2 - like a and 15 a are involved in acid - base regulation and Na + uptake in zebrafish H + - ATPase - rich cells 5

H-ATPase rich (HR) cells in zebrafish gill/skin were found to carry out Na uptake and acid-base regulation through a mechanism similar to that which occurs in mammalian proximal tubular cells. However, the roles of carbonic anhydrases (CAs) in this mechanism in zebrafish HR cells are still unclear. The present study used a 5 functional genomic approach to identify 19 CA isoforms in zebrafish. B...

متن کامل

Control of acid-base and ammonia homeostasis by the liver

Apart from its role in ammonia elimination hepatic urea synthesis helps to maintain the acid-base homeostasis. To understand this sophisticated control mechanism a mathematical model was developed that includes the glutamine metabolism of the liver at its core. The model consists of sigmoid kinetic functions controlling the periportal production of ammonia by glutaminase (EC 3.5.1.2), the periv...

متن کامل

Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells.

H(+)-ATPase-rich (HR) cells in zebrafish gills/skin were found to carry out Na+ uptake and acid-base regulation through a mechanism similar to that which occurs in mammalian proximal tubular cells. However, the roles of carbonic anhydrases (CAs) in this mechanism in zebrafish HR cells are still unclear. The present study used a functional genomic approach to identify 20 CA isoforms in zebrafish...

متن کامل

Acid-base disequilibrium in the venous blood of rainbow trout (Oncorhynchus mykiss)

Acid-base equilibria/disequilibria were evaluated in vivo in post-branchial arterial blood and pre-branchial venous blood of freshwater rainbow trout (Oncorhynchus mykiss). This was accomplished using arterial and venous extracorporeal circuits in conjunction with a stopped-flow apparatus. After the abrupt stoppage of circulating post-branchial blood within the stopped-flow apparatus, pH increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012